
Huansong Fu*,
Manjunath Gorentla Venkata†,
Neena Imam†, Weikuan Yu*

*Florida State University
†Oak Ridge National Laboratory

Portable SHMEMCache:
A High-Performance Key-Value
Store on OpenSHMEM and MPI

S-2

Outline
• Background and Motivation

– SHMEMCache
– Why Portable SHMEMCache

• Design and Implementation
– Modular architecture
– Portable interface
– Leveraging OpenSHMEM and MPI

• Experiment
• Conclusion and Future Work

S-3

• Distributed in-memory key-value (KV) store caches
KV pairs in memory for fast access.

• One-sided communication has been popularly used
for distributed in-memory KV store.
– More relaxed synchronization requirements
– Low-latency and high-throughput operations with RDMA

One-sided Communication for KV Store

Two-sided recv

One-sided

Client

put 1
get 1

Server

send 2

send 1

put 2

S-4

SHMEMCache
• SHMEMCache is a high-performance distributed key-

value store built on OpenSHMEM.
– Data are stored in symmetric memory of servers and can be

accessed by clients through one-sided operations.
• Both SET and GET can be conducted directly by clients.
• Low-cost coarse-grained cache management.

– Good trend of scalability to more than one thousand nodes.

Symmetric memory
Server

Client

Hash Table
Lookup

Direct
KV Operation

Active
KV Operation

Hash
table KV store Message

chunks

Client

S-5

Opportunity for Portable SHMEMCache
• Besides OpenSHMEM, one-sided communication is

available through a wide range of libraries.
– MPI, UPC, Co-Array Fortran/C++, etc.

• By leveraging them in SHMEMCache, we can have...
– Higher portability of SHMEMCache.
– Potential performance improvement.
– More understanding about how different one-sided

communications fit in with SHMEMCache or even other
distributed systems that use one-sided communication.

S-6

Designing Portable SHMEMCache
• Modular communication architecture

– Needs to be able to accommodate new one-sided
communication libraries.

• Portable interface
– More general and easy to implement.

• Examining the suitability and choosing the best
implementation approach for each library.
– Memory semantics: visibility of remote memory, ways to

access remote memory.
– Synchronization method: delivery of data, involvement of

remote process, synchronization overhead.

S-7

Outline
• Background and Motivation

– SHMEMCache
– Why Portable SHMEMCache

• Design and Implementation
– Modular architecture
– Portable interface
– Leveraging OpenSHMEM and MPI

• Experiment
• Conclusion and Future Work

S-8

Modular Architecture
• A layer of communication interface is added to

abstract the communication between client and server.
– Modularizes the work of supporting new one-sided

communication libraries.

Messaging
interface Messaging interface

One-sided communication libraries

Server

Client
response

Cache & hash table
management

High-speed interconnects

Client

Direct KV
operations

Active KV
operations

Hash
lookup

Direct interface

OpenSHMEM MPI ……

One-sided communication libraries
OpenSHMEM MPI ……

S-9

Portable Interface
• Direct interface

– Akin to common one-sided Put and Get but more general.
– Target memory = ID + offset

• Messaging interface
– Either one or multiple buffered messages of a window size.

• Buffering enabled accordingly (e.g. when no response is required).

int shmemcache_put(void * src_buf, size_t length,
ProcessID dst_proc, MemoryID dst_mem,
size_t offset);

int shmemcache_get(void * dst_buf, size_t length,
ProcessID dst_proc, MemoryID dst_mem,
size_t offset);

int shmemcache_send(Message * msg, ProcessID dst_proc);
int shmemcache_send_buffered(Message ** msgs, ProcessID dst_proc);
Message * shmemcache_recv(ProcessID dst_proc);

S-10

• Memory semantics
– Shared memory model fits in nicely. Visible remote memory.
– Translate memory address to memory ID + offset.

• Synchronization
– Source PE uses shmem_quiet to assure data delivery.

• shmem_fence NOT suitable: only assuring ordering.

– Target PE simply polls local symmetric memory.
• shmem_wait NOT suitable: less flexibility for the target PE

Leveraging OpenSHMEM

shmem_put

shmem_get

shmemcache_put

shmemcache_get

shmem_put
shmemcache_send

shmemcache_send_buffered

shmemcache_recv

multiple shmem_puts
ID = 0 poll

+ shmem_quiet
+ shmem_quiet

+ shmem_quiet

offset = 2

Active InterfaceDirect Interface

S-11

Leveraging MPI
• Memory semantics

– RMA unified over RMA separate. Need hardware support.
– Associate MPI windows with memory IDs.

• Synchronization
– Post-and-wait: client start/complete, server post/wait.

• NOT suitable: need exact matching of calls from client/server.
• Similar reason to why Isend/Irecv is not suitable either.

– Fence: every process synchronizes in an epoch.
• NOT suitable: hard to determine a good duration of the epoch.

– Short duration: high synchronization overheads for all.
– Long duration: prolonged KV operation latency.

S-12

Leveraging MPI (cont.)
• Synchronization approach (cont.)

– Lock and unlock: provide passive point-to-point
synchronization, which is desired by SHMEMCache.

– Using lighter-weight lock-all and unlock-all?
• Not necessary. Client communicates with only one server each time.

• Implementation similar to the OpenSHMEM version.
– But two synchronization calls are required each time.

offset = 2

mpi_put + mpi_quiet

mpi_get

shmemcache_put

shmemcache_get

lock + mpi_put + unlockshmemcache_send

shmemcache_send_buffered

shmemcache_recv

lock + multiple mpi_puts
+ unlockID = 0 poll

S-13

Outline
• Background and Motivation

– SHMEMCache
– Why Portable SHMEMCache

• Design and Implementation
– Modular architecture
– Portable interface
– Leveraging OpenSHMEM and MPI

• Experiment
• Conclusion and Future Work

S-14

Experimental Setup
• Innovation

– An in-house cluster with 21 dual-socket server nodes, each
featuring 10 Intel Xeon(R) cores and 64 GB memory. All
nodes are connected through an FDR Infiniband interconnect
with the ConnectX-3 NIC.

• Titan supercomputer
– Titan is a hybrid-architecture Cray XK7 system, which

consists of 18,688 nodes and each node is equipped with a
16-core AMD Opteron CPU and 32GB of DDR3 memory.

• Workloads generated by YCSB
• Open MPI v2.1.0 for both OpenSHMEM and MPI

versions of SHMEMCache

S-15

Direct KV Operation Latency
• Performance trend is similar on Innovation cluster

(Inv) and Titan supercomputer (Titan).
• OpenSHMEM version has lower latency in general.

– Key cause is MPI’s higher synchronization overhead.
• Optimization: MPI_MODE_NOCHECK assertion

 1

 10

 100

 1000

 1 16 256 4K 64K 512K

Ti
m

e
(µ

s)

Value Size (Bytes)

OpenSHMEM
MPI

(a) Direct GET latency (Inv) (b) Direct SET latency (Titan)

 1

 10

 100

 1000

 1 16 256 4K 64K 512K

Ti
m

e
(µ

s)

Value Size (Bytes)

OpenSHMEM
MPI

S-16

Active KV Operation Latency
• Active KV operation has larger performance difference

between OpenSHMEM and MPI versions.
• Increasing messaging window size can mitigate the gap.

– But only for limited scenarios.

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 32

Ti
m

e
(µ

s)

Window Size

OpenSHMEM
MPI

(a) Non-buffered Active
GET latency (Inv)

(b) Active GET latency with varying
window sizes (Inv)

 1

 10

 100

 1000

 1 16 256 4K 64K 512K

Ti
m

e
(µ

s)

Value Size (Bytes)

OpenSHMEM
MPI

S-17

KV Operation Throughput
• OpenSHMEM version has slightly higher throughput

in general.
• Both can scale well to 1024 nodes on Titan.

(a) Operation throughput (Inv) (b) Operation throughput (Titan)

 10

 100

 1000

 10000

 1 2 4 8 16

Th
ro

ug
hp

ut
 (K

op
s/

S)

Num of Clients

OpenSHMEM
MPI 100

 1000

 10000

 100000

 1x106

 1 4 16 64 256 1024

Th
ro

ug
hp

ut
 (K

op
s/

S)

Num of Clients

OpenSHMEM
MPI

S-18

Conclusion
• We have extended SHMEMCache, a high-performance

distributed key-value store to portable SHMEMCache.

• We have supported both OpenSHMEM and MPI one-
sided communication for SHMEMCache.

• We have examined the performance of portable
SHMEMCache on both commodity machines and
Titan supercomputer.

S-19

Future Work
• In future, we will support more one-sided

communication libraries.
– The shared memory model and the abstraction of memory

ID+offset are generally applicable.
• PGAS family (CAF, UPC, etc.) have addressable remote memory

similar to OpenSHMEM.
• Similarly, lower-level communication libraries designed for PGAS

(GASNet, OSPRI, etc.) also meet the needs.

– Flexible passive synchronization point-to-point method is
generally available.

• CAF, UPC: lock/unlock
• GASNet: try/wait for implicit-handle non-blocking operations

• We will also explore other use cases for one-sided
communication, such as graph processing.

Acknowledgment

Thank You and Questions?

